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A jerk-based algorithm ACCEL
for the accurate classification
of sleep–wake states from arm acceleration

Koji L. Ode,1,2,6 Shoi Shi,1,2,6 Machiko Katori,3,6 Kentaro Mitsui,3 Shin Takanashi,4 Ryo Oguchi,4 Daisuke Aoki,5

and Hiroki R. Ueda1,2,3,7,*

SUMMARY

Arm acceleration data have been used to measure sleep–wake rhythmicity.
Although several methods have been developed for the accurate classification
of sleep–wake episodes, a method with both high sensitivity and specificity has
not been fully established. In this study, we developed an algorithm, named
ACceleration-based Classification and Estimation of Long-term sleep–wake cy-
cles (ACCEL) that classifies sleep and wake episodes using only raw accelerom-
eter data, without relying on device-specific functions. The algorithm uses a
derivative of triaxial acceleration (jerk), which can reduce individual differences
in the variability of acceleration data. Applying a machine learning algorithm to
the jerk data achieved sleep–wake classification with a high sensitivity (>90%)
and specificity (>80%). A jerk-based analysis also succeeded in recording periodic
activities consistent with pulse waves. Therefore, the ACCEL algorithm will be a
useful method for large-scale sleep measurement using simple accelerometers in
real-world settings.

INTRODUCTION

Sleep disorders and chronic sleep disturbance are associated with various health problems, including life-

style-related diseases, mental disorders, and more generally, human performance. Assessing sleep status

is important not only for patients with specific sleep disorders but also for all people in their daily lives. This

is because individuals’ sleep–wake behavior is largely affected by social factors such as working/school

hours and stress. The problems caused by sleep disorders also affect people in society—for example, it

has been estimated that sleep disorders cause a significant amount of economic loss (Bonnet and Arand,

1995; Hillman et al., 2006, 2018; Skaer and Sclar, 2010). Accurate determination of sleep–wake states and

measurement of sleep–wake cycles over a long period (e.g., 2 weeks) is required to correctly assess human

sleep behavior because sleep rhythms typically differ between weekdays and weekends. A precise and

standardmethod for human sleepmeasurement is based on polysomnography (PSG)measurements. How-

ever, PSG measurements require specialized technicians and are not suitable for continuous and routine

sleep measurement for the public.

For this reason, alternative methods have been developed to assess sleep behavior in a nonclinical and

noninvasive manner (Perez-Pozuelo et al., 2020). Questionnaires on an individual’s sleep routine are one

of the easiest alternatives for large-scale data collection. For example, the Munich ChronoType Question-

naire (MCTQ) has been successful in quantitatively estimating an individual’s chronotype (Roenneberg

et al., 2003, 2015, 2019). The MCTQ also revealed irregular sleep schedules caused by social environments,

namely, a social jet lag, in most people in modern society (Roenneberg et al., 2012; Wittmann et al., 2006).

Recently, question-based surveymethods can be easily distributed around the world using smartphone ap-

plications, and such surveys demonstrate the worldwide distribution of different sleep schedules (Walch

et al., 2016). Alternatively, activity logs that reflect human behavioral rhythms, even if only indirectly, may

be useful for monitoring social sleep schedules. As an example, the analysis of Twitter history was used

to estimate regional differences in the presence or absence of social jet lag (Leypunskiy et al., 2018). How-

ever, there are limitations with questionnaires and indirect behavioral logs: the questionnaire-based survey

can contain biases based on participants’ subjective responses, and accurate estimates of sleep schedules

are difficult based on indirect behavioral logs. As solutions to these problems, researchers have been
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focusing on the use of wearable devices to measure sleep schedules because these devices can collect

behavioral data of subjects more directly (Kim et al., 2020).

Among wearable devices, wristwatch devices have been increasingly regarded as promising tools for

behavioral logging. Wristwatch devices, such as smartwatches, have been developed and become more

popular. Although research devices for acquiring actograms (e.g., Actiwatch) have been mainly used to ac-

quire personal activity logs, recent development and consumer devices, such as the Apple Watch, have al-

lowed many people to measure personal activity logs in some way over a long period. Consumer devices

have been increasingly used in medical research. For example, activity logging with Axivity is involved in

the protocol of the UK Biobank project aiming to collect the genetic and phenotypic dataset from half a

million UK participants (Bycroft et al., 2018; Sudlow et al., 2015). Simultaneously, the development of algo-

rithms for accurately determining sleep–wake based on wearable devices has been advancing. Wristwatch

devices can be equipped with several sensors, such as heart-rate monitors, of which triaxial accelerometers

are commonly equipped and used to monitor the wearer’s activity status. Accordingly, the classification of

sleep–wake states based on acceleration data of the arm can be considered to have a wide range of appli-

cations. In addition to the pioneering developments using threshold-based algorithms (Cole et al., 1992),

recent applications of deep learning/machine learning (ML) have achieved sleep–wake classification with

higher accuracy (Walch et al., 2019). Furthermore, it has been demonstrated that ultradian rhythmicity dur-

ing the sleep phase can be extracted from the arm movement recordings (Winnebeck et al., 2018), and

thus, it is expected that arm acceleration can be used not only to classify sleep and wakefulness but also

to evaluate the structure/quality of sleep episodes.

However, there are still several problems to be solved in terms of both devices and algorithms. First, several

popular devices such as Apple Watch have a complex structure with multiple sensors, and their internal

structure and hardware settings are not completely clear. Thus, it is difficult to keep track of what factors

are responsible for differences in measurement accuracy between different consumer devices. The hard-

ware issues also limit the use of proprietary sleep–wake classification methods for medical research. For

example, Actiwatch and Fitbit have proprietary sleep–wake algorithms associated with their respective

devices (de Zambotti et al., 2016; Kosmadopoulos et al., 2014), but these algorithms are expected to be

optimized for the corresponding hardware, and it is unclear how generally applicable they are to different

devices. Even algorithms whose details are publicly available, such as algorithms that set specific thresh-

olds to determine sleep–wake are expected to be significantly affected by sensor sensitivity. Furthermore,

there is still room for improvement in the accuracy of sleep–wake classification; for example, several recent

proprietary or open algorithms showed high accuracy in determining sleep–wake state compared with

PSG, but the specificity of classification was relatively low (de Zambotti et al., 2016; Kosmadopoulos

et al., 2014; Walch et al., 2019). Low specificity can be a problem in the precise detection of detailed sleep

structure metrics such as wake time after sleep onset (WASO).

Overall, standardization is an ongoing challenge in the field of routine sleep measurement with wearable

devices. In this study, a wristwatch device is developed that simply records the raw data of a triaxial accel-

erometer to rule out any uncertain properties of proprietary devices and algorithms. No other functions

were actively installed. We have recorded arm movement and PSG simultaneously. By applying ML to fea-

tures extracted from the power spectrum (PS) of the jerk of triaxial acceleration, we developed an algorithm

that accurately classifies sleep and awake stages with high sensitivity and specificity. The ACCEL algorithm

can also accurately annotate the total sleep time (TST) and WASO as well as the time window where the

device is not equipped. In addition, we found that the accelerometer detects rhythmic jerk signals peaking

around 1 Hz, which well match with the frequency of individuals’ pulse waves. The detection of a pulse-like

signal may be useful for evaluating detailed sleep structures and their abnormality. In summary, we present

a jerk-based algorithm that can accurately classify sleep–wake state based on the triaxial accelerometer

without the need for any specific features installed in proprietary devices.

RESULTS

Setting up a simple wristwatch accelerometer with open configuration

We used a custom-made wristwatch accelerometer that simply records raw data of a three-dimensional

(3D) digital accelerometer LSM6DSM (STmicroelectronics, Swiss Confederation) with a full-scale accelera-

tion range of G2 g at a 16-bit resolution to ensure that obtained triaxial acceleration of arm movement is

unaffected by device-specific configurations. An analog anti-aliasing low-pass filter was turned off to obtain
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a sensor value that was as unprocessed as possible. The other digital low-pass filter cannot be disabled

because of the sensor configuration. Triaxial acceleration values are recorded on the micro SD card every

2.5 min (Figures 1A and S1). Participants were subjected to PSG and accelerometer recordings at the same

time for an entire night. According to the questionnaire summarized in Table S1 and Figure S2, the vari-

ability in the sleep schedules of all participants can be assumed to be within the range of normal Japanese

population variability (Kitamura et al., 2014). The PSG device is wireless, and all participants were asked to

sleep or stay awake overnight, so the obtained dataset includes recordings from both sleep and awake

states (Figure 1B). The ground-truth annotation of sleep stages was recovered from PSG data with manual

curation by experts.

Development of sleep–wake classification algorithm

When analyzing sleep from acceleration data, it is common to convert the acceleration time-series data into

features and input them into algorithms such as ML algorithms. Activity counts, calculated per epoch as the

sum of a maximum value of z axis signals, are traditional features and have been used as input to many

sleep–wake classification algorithms (de Zambotti et al., 2016; Kosmadopoulos et al., 2014; Walch et al.,

2019). Although existing algorithms have classified sleep and awake episodes with high accuracy (e.g.,

90.9%) (de Zambotti et al., 2016), the specificity of sleep classification (i.e., the ability to detect wake) has

been relatively low (e.g., 54.1%) (Walch et al., 2019). It means that these algorithms tend to fail in detecting

wake during night, including short-term awake, which is one of the major features observed in most

insomnia patients (American Psychiatric Association, 2013). These algorithms use only one-dimensional

features (i.e., activity count) per epoch for the classification and may be occasionally unable to distinguish

between sleep and awake with low activity. Thus, in this study, we tested four features with 60 dimensions:

raw norm, raw PS, jerk norm, and jerk PS (Figure 2A, see also Method details). Raw norm and raw PS are

based on triaxial acceleration. Jerk norm and jerk PS are based on acceleration deviation. Acceleration

data from 32 trials were converted into each feature and used for input to XGBoost, a gradient boosted

tree algorithm, to classify sleep and wake for each 30-s epoch. Classification performance was evaluated

by comparing the predictions with sleep–wake classification results obtained by PSG. As a result, the algo-

rithm using jerk PS showed the best performance among the four features (Figure 2B). Using all four fea-

tures did not markedly increase the performance with a slight decrease in the specificity (Figure 2B), sug-

gesting that most of the information used for the sleep-wake classification is covered by jerk PS. We then

evaluated whether the XGBoost is superior to other classification algorithms such as linear regression (LR)

and multilayer perceptron (MLP). Sleep–wake classification performance was calculated by using the same

jerk PS dataset. XGBoost showed highest specificity compared to linear regression, multilayer perceptron

(LR: 52.45 G 12.12%, MLP: 71.63 G 12.29%, XGBoost: 72.36 G 13.27%) with comparable accuracy (LR:

82.15 G 8.11%, MLP: 86.61 G 6.10%, XGBoost: 86.50 G 5.42%), F measure (LR: 62.82 G 10.44%, MLP:

74.38 G 11.62%, XGBoost: 74.17 G 11.48%), and sensitivity (LR: 95.54 G 1.94%, MLP: 92.96 G 5.74%,

XGBoost: 92.28 G 4.68%). Thus, jerk PS and XGBoost were selected as the feature and classification algo-

rithm for the proposed method. The feature is extracted by two steps shown in Figure 2C. Step 1 is con-

verting triaxial acceleration to jerk, and step 2 is converting jerk to PS (0–2 Hz).

To further improve the algorithm, we considered time-series data that included not only the current epoch

but also preceding and subsequent epochs (Figure 2D). The PS of neighboring k (k = 0, 1, 2, 3, 4, 5) epochs

was concatenated (termed as ‘‘large feature’’) and used as the input to XGBoost. The algorithm’s perfor-

mance improved with larger features and reached saturation after k = 4 (Figure 2D). Thus, we chose to

use k = 4, meaning that our algorithm uses jerk PS feature of nine epochs to classify the sleep status of

the target epoch (i.e., one target epoch, four preceding epochs, and four subsequent epochs). The eval-

uation of XGBoost weightings applied to each neighboring epoch revealed that epochs subsequent to

the target epoch, rather than the preceding epochs, have higher contribution to the sleep-wake classifica-

tion (Figure 2E).

The hyperparameter of XGBoost was further optimized by using Bayesian global optimization with

Gaussian process. The six hyperparameters of XGBoost were evaluated and trained by leave-one-out

cross-validation (LOOCV) to optimize the summation of accuracy and F measure. LOOCV was conducted

by dividing 32 data into training dataset (31 data) and validation dataset (the remaining one data). The per-

formance of XGBoost was calculated by repeating the training and validation 32 times with slecting

different one data for the validation such that the evaluation would not be biased toward a specific dataset.

Based on the LOOCV, the hyperparameters were updated by Bayesian optimization. We repeated the
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Figure 1. Design of simplified wristwatch accelerometer

(A) Device overview. The accelerometer was designed to be worn on the inside of a commercially available silicone

wristband. The accelerometer includes a triaxial 3D accelerometer, electric circuit board, battery, and micro SD card to

store the acceleration data.

(B) Example plot of simultaneously recorded triaxial acceleration and sleep stages classified by PSG analysis. See also

Figures S1 and S2 and Table S1.
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Figure 2. Development of jerk-based sleep-wake classification algorithm, ACCEL

(A) Overview of feature extraction.

(B) The performance of the sleep–wake classification algorithms with different features or by using all the four features (Multiple) shown as average G SD.

Acc: Accuracy. (F) F measure. Sens: Sensitivity. Spec: Specificity.
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optimization process 2,000 times. With the optimization process, our algorithm achieved high sensitivity

(96.13 G 5.61%) and specificity (80.18 G 12.71%) (Figure 2F). The algorithm with high specificity, ACCEL,

demonstrates that it can detect short-term awake during sleep with high reliability, which was difficult to

achieve in previous studies using arm/finger-movement-based algorithms (de Zambotti et al., 2016,

2019; Kosmadopoulos et al., 2014; Markwald et al., 2016; van Hees et al., 2015; Walch et al., 2019) (Table

S2). Although we do not exclude the possibility that the data difference (e.g., different devices for the

recording) among the listed studies affect the performance of each algorithm, it should be noted that win-

dow size for taking the averaged arm/finger-movement does not affect the performance of ACCEL algo-

rithm because jerk PS does not take the average of raw data.

The difference between the sleep time obtained by ACCEL and the ground-truth sleep time obtained by

PSG was 18.06 G 29.64 min (Figure 2G). Similarly, the difference for WASO was 4.02 G 31.62 min (Figure

2H). Cohen’s kappa value was calculated to be 77.91%, indicating that the ACCEL-based and PSG-based

sleep–wake classifications agree well. Thus, the proposed algorithm has high performance in classifying

sleep–wake and accurately detects short-term awakeness.

To investigate the advantage of calculating jerk in sleep–wake classification, we focused on the differences

between each measurement. For each measurement, the raw norm and jerk norm values were averaged for

sleep and wake epochs. The individual differences in jerk norm in sleep epochs were lower than those of

raw norm (p <0.001, Student’s t test) (Figure S3A). This result indicates that individual differences in sleep

epochs are mitigated by converting raw data into jerk data.

Application of non-wear detection algorithm

Using the thresholds of two features, namely, standard deviation and acceleration range, a previous study

predicted non-wear epochs, when a subject does not wear the wristwatch (van Hees et al., 2013). To eval-

uate whether van Hees’s algorithm applies to our device, we collected acceleration data from five subjects

(60.03 days data in total) and recorded the timestamps when the subjects were not wearing the device. An

analysis of the distribution of the two features during the non-wear period showed that almost all data were

below the thresholds, indicating that the thresholds proposed in a previous study (van Hees et al., 2013)

apply to our device (Figures 2I and 2J). The non-wear detection algorithm was evaluated using four scores,

namely, accuracy, F measure, sensitivity, and specificity, for each individual. In this case, sensitivity and

specificity show the ability to detect non-wear and wear periods, respectively. The non-wear detection al-

gorithm achieved high accuracy (92.49%) and high specificity (99.19%) (Figure 2K). By combining the non-

wear detection and sleep–wake classification algorithms, we can recover the sleep–wake behavior from the

continuous accelerometer measurement for more than 1 week in the presence of occasional non-wear pe-

riods (Figure S3B).

Extraction of pulse-like signal from the acceleration data

During the course of jerk PS analysis, we noticed a characteristic rhythmic signal at a frequency of approx-

imately 1 Hz (Figure 3A). Such a �1 Hz rhythmic signal becomes visible by calculating the jerk PS, and was

not found in raw PS. This�1 Hz signal is clearly observed during sleep when overall arm movement is small.

We assumed that this rhythmicity may be related to pulse rate, whose frequency is also approximately 1 Hz

(i.e., 60 beats per minute). Our PSG recording includes the pulse rate recorded by a finger sensor for pulse

Figure 2. Continued

(C) Overview of the sleep–wake classification algorithm.

(D) Effect of surrounding epochs on the performance of the algorithm. The accuracy (top left), F measure (top right), sensitivity (bottom left), and specificity

(bottom right) of sleep-wake classification were calculated by using jerk PS with different number of neighboring epochs, k, and shown as average G SD.

(E) The contribution of each neighboring epoch at a different position relative to the target nth epoch on the sleep-wake classification of ACCEL. Feature

importances were calculated by taking the summation of trained XGBoost weights assigned to the 60-dimensional features in each epoch position.

(F) The performance of the ACCEL algorithm shown as average G SD. Acc: Accuracy. (F) F measure. Sens: Sensitivity. Spec: Specificity.

(G and H) Bland–Altman plots of TST, and WASO measured by PSG recording and ACCEL. The solid gray lines represent the mean, and the dashed lines

represent the mean G1.95 standard deviation.

(I and J) The histogram and distribution of standard deviation and range of each accelerometer, calculated by shifting the 60-min block by 15 min. For each

epoch, three values of standard deviation and range can be calculated corresponding to x, y, and z axis. The figures plot the values of the second largest axis.

When either of the second-largest standard deviation or range was less than or equal to the threshold shown as the gray dashed lines, the block was

considered as a non-wear period.

(K) The performance of the non-wear detection algorithm. Acc: Accuracy. (F) F measure. Sens: Sensitivity. Spec: Specificity. See also Table S2.
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Figure 3. Validation of jerk-based pulse detection

(A) Example time-series plot of ground truth, the power spectrum of acceleration signal, and the power spectrum of jerk.

(B) Example time-series plots of pulse rate and frequency with themaximum power in the 0.5–1.5 Hz of jerk, jerk of x-, y-, or

z axis. Blue-shaded area indicates epochs used for the comparison between jerk and pulse rate, where the epochs are

classified as sleep and the averaged pulse rate is nonzero value. The plot on the left shows an example trial where the arm

movement was generally stable, whereas the plot on the right shows a trial where the jerk showed a large value in most of

the sleep epochs.

(C) Boxplot of the difference between pulse rate and jerk frequency with the maximum power in the indicated frequency

bands.

(D) Boxplot of the difference between respiration rate and jerk frequency with the maximum power in the indicated

frequency bands.

(E) Dot plot of the difference between pulse rate and pulse-like signals based on jerk.

(F) Bar plot of the difference between pulse-like signal and other signals shown as average G SD. Resp: Respiration

signal. See also Figure S3.
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oximeters. When we plotted the time-series of the frequency at which the jerk PS is maximum within 0.5–

1.5 Hz and pulse rate, the similarity between the two signals was observed during the stable epoch, where

the overall arm acceleration is relatively small and mostly classified as sleep (Figure 3B). We quantitatively

compared the frequency bands of the jerk signal to pulse rate and respiration signal obtained from an

airflow sensor attached to the nose to confirm whether the rhythmic jerk signal corresponds to pulse or

other periodic movements around 1 Hz. The signal of jerk matched well with the signal of pulse in the range

of 0.5–1.5 Hz, corresponding to the pulse rate of the resting state (Figure 3C). In contrast, the epoch-by-

epoch difference was significantly larger in the comparison between the jerk signal and the respiration

signal at any of the tested frequency domains (Figures 3D and S3C). Finally, we calculated the difference

between jerk signals in the 0.5–1.5 Hz range and pulse signals for each trial (Figures 3E and 3F) and found

that the difference between the two signals is significantly smaller than the difference between jerk signals

and respiration signals. Overall, these evaluations indicate that the rhythmic jerk signal can be attributed to

the pulse signal and indicate that a simple accelerometer device can acquire pulse information at least

when a subject is in the resting state. In the later sections, we will call the �1 Hz rhythmic signal of jerk

PS as a ‘‘pulse-like signal.’’

Pulse data in NREM and REM sleep

Pulse signals have been reported to show different characteristics in REM and NREM sleep, where the width of

the pulse wave (peak to peak) is regular in NREM sleep but becomes irregular in REM sleep owing to the

changes in the autonomic nervous system (Dehkordi et al., 2013; Garde et al., 2014; Khandoker et al., 2011).

Thus, in this study, we investigated whether this feature is also preserved in a pulse-like signal acquired by

the accelerometer. Extracted frequency bands around the pulse-like signal during NREM and REM periods

shown in Figure 4A demonstrate that the pulse-like signal is observed in a wider frequency range during

REM sleep. This may be attributed to the irregular nature of pulse during REM sleep. To quantitatively compare

the variance of the pulse-like signal between NREM and REM epochs, we measured the variance of the pulse-

like signal by calculating the difference between the points before and after the peak (Figure 4B). In addition, we
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Figure 4. Variety of pulse-like signal between REM and NREM sleep epochs

(A) Heatmap of jerk signal during REM and NREM sleep.

(B) Method for calculating the variance of pulse-like signal (VP).

(C) Scatterplot of the difference between VPN and VPR . It was significant against zero (p <0.01, Student’s t test). The

horizontal axis shows the average difference between pulse rate and pulse-like signals.

(D) Plot of p value corresponding to the value of j for calculating VP. The range of the horizontal axis corresponds to the j of

panel (B).
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calculated VPN � VPR , where VPN and VPR represent the average of the variance of the pulse-like signal during

NREM and REM epochs, respectively, and showed that the value was significantly negative (i.e., the variance of

the pulse-like signal is larger during REM epochs) (Figure 4C). We also confirmed that the significant difference

between NREMand REM epochs is independent of the number of points used in calculating the variance of the

pulse-like signal (Figure 4D), excluding the possibility that the difference is because of the different number of

NREM and REM epochs observed during the recording sessions, and thus used for calculating the variance.

Therefore, we concluded that the pulse-like signal obtained from the acceleration signal can capture the

different characteristics in REM and NREM as the pulse signal.

DISCUSSION

A jerk-based algorithm provides robust sleep–wake classification with a simple

accelerometer device

Accurate and simple measurement of the sleep–wake cycle is a promising direction for human sleep

research, especially for large-scale human sleep studies. With the recent development of ML algorithms,

various alternative sleep monitoring methods have been proposed. Building on the correlation between

sleep stages and fluctuations of heart rate variability (HRV), electrocardiogram-based monitoring has

been performed (Aktaruzzaman et al., 2015; Xiao et al., 2013). Respiration-based sleep monitoring (Long

et al., 2014; Sun et al., 2020) is one of the major methods because breathing rhythms are more stable during

sleep than during wake (Krieger, 1985). Another direction is to use the acceleration of bodymovements. For

example, smartphone-based (Toon et al., 2016) and wristband-type sleep monitoring (de Zambotti et al.,

2016; Kosmadopoulos et al., 2014; Walch et al., 2019) have been proposed. Among them, wristband-type

accelerometers are particularly suitable for large-scale sleep studies because of their long-term measure-

ment capability, including daytimes, and ease of use. Actiware (Mini-Mitter Philips Respironics, Inc., Sun-

river, OR, USA) is a software used to classify wake and sleep fromActiwatch (Mini-Mitter Philips Respironics,

Inc., Sunriver, OR, USA), which is a major wristband-type accelerometer. Version 3.4 of the software em-

ploys a threshold-based algorithm, where each 30 s and the surrounding 2 min of data are used for estima-

tion (Kushida et al., 2001). This software has several threshold choices, and the trade-off between specificity

(the ability to detect wake) and accuracy (supported by sensitivity, i.e., the ability to detect sleep) has been

demonstrated with 38 PSG data (Kosmadopoulos et al., 2014). The highest threshold among the tested

thresholds showed the highest accuracy (88.0%) and the lowest specificity (26.9%), whereas the lowest

threshold showed the lowest accuracy (61.5%) and the highest specificity (61.5%). Fitbit and Apple Watch

are the famous wristband implementations for sleepmonitoring. The sleepmonitoring of FitbitChargeHR�
(FitBit Inc., San Francisco, CA, USA) uses the heart rate measured by PurePulse� LED lights in addition to

acceleration. Validation with 30 PSG data showed low specificity (42.4 G 15.9%) but high accuracy (90.9 G

4.7%) (de Zambotti et al., 2016). The combination of high accuracy and low specificity has also been demon-

strated with Apple Watch, for which accuracy was �90% but specificity was �60% (Walch et al., 2019). The

low specificity means that the algorithms fail to capture wake during night including short-term awake,

leading to the inaccurate measurement of difficulty maintaining sleep, which is the major sleep pattern

feature of patients suffering from insomnia (American Psychiatric Association, 2013).

We developed the ACCEL algorithm using accelerometer data, which is largely unprocessed. Therefore,

the algorithm does not necessarily require expensive and sophisticated devices but can be applied to

simple accelerometers that are probably inexpensive to produce. Furthermore, the algorithm has

superior performance. We demonstrated that accurate sleep–wake determination with high accuracy

(91.71 G 4.80%) and specificity (80.18 G 12.71%), especially the sensitive detection of awakeness

during sleep. The high specificity of our algorithm may be because of the use of F measure as well as

accuracy as the targets for optimization in hyperparameter tuning of ML. The overall performance should

be improved by calculating jerk and extracting the frequency components that mitigate the variance be-

tween devices and/or measurements. Indeed, jerk PS is also used for the sleep-wake classification in

other neural-network based algorithms developed by Eric Canton (https://github.com/ericcanton/

sleep_classifiers_accel_ML). Although there are considerable differences between ACCEL and Canton’s

algorithm (e.g., Canton’s code uses the daytime/nighttime information of jerk PS, whereas ACCEL only

uses acceleration data), the jerk PS of arm’s acceleration may be an important alternative to the EEG-

EMG for robust sleep-wake classification. The application of the non-wear detection algorithm proposed

by van Hees et al. (van Hees et al., 2013) is also successful. Non-wear detection is important because sub-

jects may not always wear the device reliably in large-scale sleep measurements. These features are
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essential to make large-scale sleep–wake measurements in a real-world setting more feasible, and our

study suggests that this can be achieved by a simple device that essentially only records the raw value

of the triaxial accelerometer.

Triaxial accelerometer can be used to detect pulse signal: potential merit

The possibility of capturing pulse waves, even with a simple accelerometer, would also lead to a more

detailed assessment of the sleep state, such as the depth of sleep and NREM–REM cycle. Sleep–wake tran-

sition and the transition between sleep stages are accompanied by altered activity in the autonomic ner-

vous system (Mendez et al., 2009; Scholz et al., 1997; Welch and Richardson, 1973). The autonomic nervous

system affects the heart rate. Accordingly, differences in HRV are observed between NREM sleep and REM

sleep (Mendez et al., 2009), and several algorithms have been developed for classifying sleep stages using

HRV (Mendez et al., 2009; Willemen et al., 2014). A simple measurement of HRV can be achieved by many

devices, including a belt worn on the chest or a high-performance wearable device such as Apple Watch

(Aktaruzzaman et al., 2017; Shcherbina et al., 2017). However, such devices are unsuitable for long-term

continuous measurement because it is difficult to install batteries that can measure HRV continuously for

more than 2 weeks. In this study, we extracted pulse-like signals from simple acceleration data and found

differences in pulse-like signals between NREM and REM sleep. Based on these differences, it will be

possible to develop a sleep-stage classification algorithm from acceleration data, which will enable us to

obtain long-term time-series data of sleep stages.

Standardized sleep–wake quantification in real life

The precise estimation of the algorithm’s general applicability to other devices, especially those that are

already commercially available and widely used, needs to be further investigated. Thus, this study will

be useful information for standardizing sleep–wake determination algorithms and devices for large-scale

sleep measurement.

Standardized and accurate sleep phenotyping is important for each individual in our society to accurately

monitor their sleep states and to detect abnormalities in their early stages. In addition, large-scale and accurate

analysis of human phenotypes, along with the accumulation of genetic information, will make it possible to

conduct reverse genetics and reverse phenotyping approaches to verify human phenotypes based on geno-

types (Ozcelik and Onat, 2016; Patke et al., 2017; Saleheen et al., 2017). These efforts may reveal genetic factors

that have a significant impact on the sleep phenotype of people in the real world.

Limitation of the study

Currently, the ACCEL algorithm is specialized in classifying sleep and wake epochs, and has not succeeded in

distinguishing sleep stageswith high sensitivity and specificity.Not only thepulse-like signal found in the jerk PS,

but also other features that could be abstracted from armmovement data such as ‘‘Locomotor Inactivity During

Sleep’’ will be important for the further in-depth classification of sleep stages (Winnebeck et al., 2018).

Although ACCEL algorithm provides accurate sleep-wake classification, the classification of sleep-wake

alone does not provide information that can lead to personalized medicine, such as whether a subject’s

sleep state is abnormal, the predicted amount of sleep debt of the subject, or when is the appropriate

time to take medication including on-line advice to adjust the subject’s misaligned chronotype. Such appli-

cation requires the combination of accurate sleep-wake measurement and quantitative models to predict

the internal sleep-wake dynamics (Kim et al., 2020). Several models have been proposed in recent years to

represent not only the day-night sleep cycle but also the NREM-REM sleep structure (Booth andDiniz Behn,

2014). Recent studies also have shown that the combination of measured data and mathematical models

can predict temporary sleep-wake transitions, such as daytime sleepiness (Hong et al., 2021). It is an inter-

esting future prospect to combine such mathematical models to evaluate the personal sleep state based

on the long-term trends of sleep characteristics that are difficult to capture only by self-reported sleep di-

ary, such as short and temporal awakeness during sleep.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Hiroki R. Ueda (uedah-tky@umin.ac.jp).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Any additional information including code and human data except for private information reported in this

paper is available for non-commercial use from the lead contact upon reasonable request.

METHOD DETAILS

Wristwatch accelerometer

A custom-made accelerometer, including device selection, design of system block diagram (Figure S1)

electric circuit diagram, and printed circuit board (PCB) pattern was developed by Sony Mobile Inc. The

3D acceleration sensor LSM6DSM (STmicroelectronics, Swiss Confederation), battery, and other devices

were assembled on the PCB fabricated by Sony Mobile Inc. and operated through a firmware developed

by Sony Mobile Inc. The accelerometer was housed in a plastic case fit into a commercially available rubber

band (SWR122, Sony). The weight of the housed device (excluding the rubber band) was �6 g. A recharge-

able Li-ion battery with a capacity of 3.7 V and 95 mAh, which is sufficient to continuously measure accel-

eration over 14 days was used by the device. No waterproof function is provided.

Subject detail

Twenty-five participants were recruited for this study, all of whom stated that they had no present and past

diagnosis of any type of sleep disorder, mental illness, and neurodegenerative disease. Persons who had

been on regular sleep or anti-anxiety medication in the past were excluded during the recruitment process.

The participants were asked if they temporally take medicines that may affect sleep (e.g., cold medicine or

hay fever medicine), and no participant declared that s/he took medication. The participants were allowed

to participate in multiple rounds of sleep recording trials. Trials with errors in the recording of PSG/accel-

erometer data were excluded from the analysis. Accordingly, a total of 32 sleep recordings from 21 partic-

ipants were obtained through successful sleep staging, pulse rate, and accelerometer data collection (15

participants participated in a single trial, 3 participants participated in two trials, 1 participated in three tri-

als, and 2 participated in four trials) (Table S1). The protocol has been approved by the Research Ethics

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python 3.8.3 Python Software Foundation https://www.python.org/; RRID:SCR_008394

NumPy 1.18.5 NumPy https://numpy.org/; BRID: SCR_008633

pandas 1.0.5 pandas https://pandas.pydata.org/; BRID: SCR_018214

Scikit-Learn 0.23.1 Scikit-Learn https://scikit-learn.org/stable/index.html; BRID:

SCR_002577

XGBoost 1.2.0 xgboost https://xgboost.readthedocs.io/en/stable/; BRID:

SCR_021361

Bayesian-optimization 1.1.0 Bayesian Optimization https://github.com/fmfn/BayesianOptimization

Other

SOMNOscreen plus SOMNOmedicsGmbH https://somnomedics.de/en/solutions/sleep_diagnostics/

stationary_sleep_lab_psg/somnoscreen-plus/

LSM6DSM STmicroelectronics https://www.st.com/ja/mems-and-sensors/lsm6dsm.html
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Committee, Graduate School of Medicine, The University of Tokyo (No. 11653-[1]). All participants pro-

vided written informed consent for each trial.

Questioners

All participants were asked their sex, age at the date of measurement, height, body weight, regular bed-in

and wake-up time of weekdays (working days), and regular bed-in and wake-up time of weekends (free

days). The results of the questioners are summarized in Table S1 and Figure S2. Midpoint of sleep in work-

days (MSW) and midpoint of sleep in free days (MSF) were caliculated according to the MCTQmethod (Ki-

tamura et al., 2014; Roenneberg et al., 2003, 2015).

PSG and arm acceleration recording

Participants were asked to arrive at the sleep recording room at the University of Tokyo at 20:00-22:00. Par-

ticipants were equipped with a wireless portable PSG system (SOMNOscreen plus, SOMNOmedics GmbH,

Germany). PSG data are stored in the CF card storage in the portable system as well as in the laptop com-

puter in the sleep measurement room wirelessly. Participants were also equipped with a custom-made

accelerometer that records the triaxial acceleration simultaneously on either wrist. After being outfitted

with the PSG system and the accelerometer, the participants were free to sleep or stay awake in the mea-

surement room. They may turn on and off the lights in the room andmay go to bed and wake up at any time.

After waking up, the participants removed the PSG system and the accelerometer by themselves to com-

plete the measurements. Some participants were required to continue wearing the accelerometer only for

15 days. Because the accelerometer was not waterproof, participants could put it on and take it off several

times during the days when it was supposed to be worn.

Sleep staging based on PSG

Sleep staging for every 30-s epoch was conducted with manual analysis of the PSG dataset by trained ex-

perts. The staging service is provided by Fukuda Denshi Co. Ltd (Japan).

Sleep–wake classification algorithm

Triaxial acceleration was converted into jerk data (a derivative of acceleration) and then converted into PS

(0–2 Hz in 1/30 Hz segments), which was calculated for each 30 s. The 30-s epoch size was determined to be

matched with the epoch size of PSG-based sleep staging. The feature extraction process includes jerk signal

development and PS conversion) (Figure 2A). With and without the two processes, a total of four types of fea-

tures were extracted as follows. Raw norm represents the mean values of the L2 norm of triaxial signals within

every 0.5 s. Jerk norm represents the mean values of jerk signals within every 0.5 s. Raw PS represents the PS

(0–2 Hz) of the L2 norm of triaxial signals. Jerk PS represents the PS (0–2 Hz) of jerk signals. Therefore, all of

raw norm, jerk norm, raw PS and jerk PS features are 60 dimensions, allowing us to compare different features

under the same input dimension size. The large featurewas obtained by adding PS before and after k= 1, 2, 3, 4

or 5 epochs. The final ACCEL algorithm employs k = 4. Linear regression (LR), multilayer perceptron (MLP), and

XGBoost were used as the classifiers. Scikit-learn packages (https://scikit-learn.org/stable/) were used for each

implementation. All evaluation of algorithmwere calculated with 32 data from one-night measurements (Table

S1) by LOOCV. The comparison among LR,MLP, and XGBoost was performed by using scikit-learn and the pa-

rameters was set as default value of the package. XGBoost has six hyperparameters: learning_rate, gamma,

colsample_bytree, subsample, max_depth, and min_child_weight. These parameters were optimized using

Bayesian global optimization with gaussian processes (https://github.com/fmfn/BayesianOptimization) (itera-

tion = 2,000). Each parameter could have a value in the range [0, 1], [0, 5], [0.01, 1], [0.01, 1], [1, 30], and

[1, 30]. The parameter set of six hyperparameters was evaluated as the summation of accuracy and F measure

by LOOCV. In this process, 32 data was divided into training data set (31 data) and validation data set (1 data)

and the performance of XGBoost was obtained by repeating the training and validation 32 times with different

validation data. The predicted sleep–wake data were compared with PSG-based sleep–wake data (ground

truth) by epoch to epoch. F measure is calculated as the ð2 3 precision 3 recallÞ=ðprecision + recallÞ, where
wake is calculated as true and sleep as false. Sensitivity and specificity represent the performance of sleep

and wake detection, respectively. TST for predicted sleep–wake data was calculated with the TST between

sleep onset and offset, where the first sleep epoch of more than 15 min is defined as the sleep onset and

the first wake epoch of more than 1 h as sleep offset. WASO was calculated as the length of wake duration be-

tween sleep and sleep offset.

ll
OPEN ACCESS

iScience 25, 103727, February 18, 2022 15

iScience
Article

https://scikit-learn.org/stable/
https://github.com/fmfn/BayesianOptimization


Non-wear detection

The standard deviation and value range of each accelerometer axis were calculated by shifting the 60-min

block by 15 min, and if the standard deviation was less than or equal to a threshold value (standard devi-

ation threshold equals 13 mg) for at least two axes, or if the value range was less than or equal to a threshold

value (value range threshold equals 50 mg) for at least two axes, the block was considered a non-wear

period. To validate the non-wear detection, we acquired a dataset consisting of five independent, contin-

uous triaxial accelerometer recordings: the recording duration are 14.56 days, 12.09 days, 8.75 days,

11.02 days, and 13.60 days, respectively. In this measurement, the participants were asked to record the

non-wear period, which was used as the ground truth. The non-wear detection algorithm was evaluated

using four scores, accuracy, F measure, sensitivity, and specificity, for each participant by comparing their

timestamps. In this case, sensitivity and specificity show the ability to detect non-wear and wear periods,

respectively.

Pulse analysis

The pulse rate data acquired by the PSG system were used for analysis. The sampling rate is 4 Hz, and each

epoch has 120 points. The average of pulse rate data for each epoch was calculated (Pave). Sleep epochs

with Pave > 0 were used for pulse analysis. If <50% of the total sleep epochs met the criteria, the data

from the trial was removed from the pulse analysis. To calculate pulse-like signals, the absolute time deriv-

ative of each axis data (x, y, and z) and jerk were converted into a PS. We set up a 1-Hz-wide window and

calculated the value when we moved the window from 0 to 3 Hz in 1/6-Hz steps. For each epoch, the fre-

quency with the highest power in the interval of 0.5–1.5 Hz is defined as a pulse-like signal. The breathing

data acquired by the PSG system were divided into epochs and converted into a PS. The frequency with the

highest power in the range of 0–2 Hz is defined as a respiration signal. When the pressure equals zero, the

epoch was excluded from the analysis. The variance of the pulse-like signal ðVPÞ of each epoch was calcu-

lated using the following equation: VP =
��

ai � aði�jÞ
�
+
�
ai � aði + jÞ

� �
=ðj 3 2Þ, where ai represents the

maximum value in the range 0.5–1.5 Hz of the jerk signal and aði�jÞ and aði+ jÞ represent the value of jerk

signal j (j = 1, 2, ., 7) points before and after ai.
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